K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((a+b+1)(a+b+c^2)\geq (a+b+c)^2\Rightarrow a+b+1\geq \frac{(a+b+c)^2}{a+b+c^2}\)

\(\Rightarrow \frac{1}{a+b+1}\leq \frac{a+b+c^2}{(a+b+c)^2}\)

Tương tự cho các phân thức còn lại, suy ra:

\(1\leq \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}\leq \frac{a+b+c^2}{(a+b+c)^2}+\frac{b+c+a^2}{(a+b+c)^2}+\frac{c+a+b^2}{(a+b+c)^2}\)

\(\Leftrightarrow 1\leq \frac{2(a+b+c)+a^2+b^2+c^2}{(a+b+c)^2}\)

\(\Leftrightarrow (a+b+c)^2\leq 2(a+b+c)+a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac\leq a+b+c\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

NV
18 tháng 9 2021

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

18 tháng 9 2021

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

AH
Akai Haruma
Giáo viên
3 tháng 2

Lời giải:
$\text{VT}=\frac{a(a+b+c)+bc}{b+c}+\frac{b(a+b+c)+ac}{a+c}+\frac{c(a+b+c)+ab}{a+b}$
$=\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}+\frac{(c+a)(c+b)}{a+b}$

Áp dụng BĐT AM-GM:

$\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}\geq 2\sqrt{(a+b)^2}=2(a+b)$

$\frac{(b+c)(b+a)}{a+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(b+c)^2}=2(b+c)$

$\frac{(a+b)(a+c)}{b+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(c+a)^2}=2(a+c)$

Cộng các BĐT trên theo vế và thu gọn:

$\text{VT}\geq 2(a+b+c)=2$

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

NV
4 tháng 10 2021

\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\)

\(\Leftrightarrow2\ge\dfrac{a+b}{a+b+1}+\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)^2+b+c}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)^2+c+a}\)

\(\Rightarrow2\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca+a+b+c}\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)

\(\Rightarrow\)đpcm

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$

$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

9 tháng 6 2021

cảm ơn ạ

 

NV
8 tháng 4 2021

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)